RXTE Observations of the Vela Pulsar: The Pulsar Rosetta Stone

M.S. Strickman	NRL
A.K. Harding	GSFC
C. Gwinn	UCSB
P. McCulloch	University of Tasmania
D. Moffett	Furman University

PSR B0833-45: The Vela Pulsar

- Brightest celestial gray source but difficult X-ray object
 - Faint
 - Embedded in bright pulsar wind nebula
- First X-ray observation by ROSAT
 - Pulsed spectrum described by black body
 - "Point source" spectrum described by black body or power law
 - Pulsed fraction ~11% (<1.2 keV)

Vela Pulsar (cont'd)

- First convincing hard X-ray/soft **g**ray observations by OSSE and COMPTEL
 - Pulsed spectrum only
 - Gradual rollover from very hard OSSE spectrum ($\Gamma = 1.3$) to EGRET ($\Gamma = 1.7$)

Vela Pulsar (cont'd)

- Light curve behavior seems to have three "regimes"
 - Radio: 1 peak
 - Optical: 2 peaks, small separation
 - γ-ray: 2 peaks, wider separation
- Where does the switch from "optical-like" to "**g** like" behavior occur?
- Whither the radio pulse?

Gamma2001 Meeting

RXTE Arrives with Answers and Questions

- RXTE Observations
 - Cycle 1: 93 ksec
 - Cycle 3: 274 ksec
- Analysis
 - Ephemerides from
 Princeton pulsar database
 - Epoch folding analysis with standard RXTE ftools
 - "On-pulse minus off-pulse" or fitting sinusoid model plus off-pulse "background"

- Cycle 1 results appeared in 1999 (Strickman, Harding & deJager, 1999, ApJ, 524, 373)
- "X-ray gap" between ROSAT and OSSE is filled in!
- Paper speculates that:
 - "Peak 2" may have multiple components
 - Some components may be "γlike", others "optical-like"
- Statistics insufficient to prove either claim

Cycle 3 Provides Some Answers

- Broadband light curves:
 - First peak clearly aligns with EGRET first peak
 - "Second Peak" is clearly two peaks (Δφ=0.09±0.01)
 - Lower phase, softer component aligned with optical
 - Higher phase, harder component aligned with EGRET second peak
 - Soft spectrum peak present at radio peak phase
 - Note similar feature in optical lightcurve
- No such feature at higher
 Gamma

Cycle 3 Provides Some Answers (cont'd)

- Phase-resolved spectra:
 - Peaks that are phasealigned with γ-ray peaks are hardest
 - Peaks phase-aligned with optical and/or radio peak are softest
 - Soft component of Peak 2 extrapolates to near optical fluxes

Cycle 3 Provides Some Answers (cont'd)

- Total pulsed spectrum
 - Smoothly fills in gap between hard X-ray and thermal
 - Complex shape from superposition of phaseresolved spectra
 - Comparison to Chandra "point source" spectrum indicates higher pulsed fraction than in thermal component (similar to other nonthermal emission)

Gamma2001 Meeting

Conclusions and Future Directions

• Conclusions

- Cycle 3 RXTE observations confirm the multicomponent nature of the pulsed Vela emission
- Features from radio through γ-ray present in the 2-30 keV spectrum (hence the Vela Pulsar Rosetta Stone)

- Components behavior in spectrum and phase correlated
 - Soft components phasealigned with lower energy features (radio and optical)
 - Hard components phase-aligned with higher energy features (γ-ray)

Conclusions and Future Directions (cont'd)

- Conclusions (cont'd)
 - Nonthermal X-ray measurements present new challenges to modeling the global spectrum
 - Attempts have been made to model these energies (e.g. \Rightarrow)
 - Nothing yet predicts phase resolved spectra behavior

Adapted from Dyks, Rudak & Bulik (00)

5 April 2001

Gamma2001 Meeting

Conclusions and Future Directions (cont'd)

- Future Directions
 - More observations with RXTE (>1000ksec required; not currently approved)
 - Significantly improve statistics for characterization of peaks
 - Better high energy behavior
 - Chandra observations (Pavlov et al)
 - Imaging allows phase resolved spectra without subtracting "off-pulse"
 - Need better statistics

- Simultaneous Radio
 - We have full pulse-bypulse radio coverage during the cycle 3 observation
 - Epoch fold X-ray data for different ranges of radio pulse strength/arrival time
 - Study radio phase peak as a function of radio properties

5 April 2001