Power of agile and flexible observations of
the large effective area NICER telescope
— Examples of magnetars and transients

Teruaki Enoto (RIKEN, Japan)

George Younes, Wynn Ho, Chin-Ping Hu, Wataru Buz Iwakiri,
and on behalf of the NICER Magnetar & Magnetosphere team

o 4 o
e ;
i - 4 . g . -
4 - M T ]
k. W g i wy '
4 b S & o
= . PP |
B R S hEd ] [ b et g oA
i P T—— a— . % b * SRR VLSRR
: k. - - & f
S o R P e e - Y 3 £ 4 P #
T = < : ‘ " - LN .
= G i it . =
- : 4 e ==,
L =4 v " 3 &l
3 |
=] g . ’ ————
— L '
i
Pt o 1 =
n- P Y =S ‘& < -
o |
o—
¥t
| : :

NICER Summer 2022 Science Workshop (18+2 min)
https://heasarc.gsfc.nasa.gov/docs/nicer/data_analysis/workshops/2022/nicer _workshop2022.html


https://twitter.com/teru_enoto

~X-ray observatory NICER on

effective-area 1,900 cm? at 4.5-keV with high-time resolution (<100 ns)!
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X-ray observatory NICER on the ISS

e The largest effective area 1,900 cm? at 1.5 keV with high-time resolution (<100 ns)!
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https://iopscience.iop.org/article/10.1088/1361-6633/ab3def
https://iopscience.iop.org/article/10.1088/1361-6633/ab3def
https://chandra.harvard.edu/photo/2017/crab/

Short exposure to detect the Crab pulsation

10600 cycles, 3984527 events, 357.713 s exposure
e e T T e e [T E e e e e e D

N
N
|

—_—
O
iﬁ===r'|'lllllllllllllll

N
—
|

N
I

—
00

—
~J

—
@)

Normalized X-ray count rate
o

—
AN

—
W
|

| | | | | | | | | | | | | | | | | I | | | | | | |

—
N
o IIIIIIIIIIIIIIIIIII!IIll

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Pulse phase



Short exposure to detect the Crab pulsation

NICER X-ray spectrum of

Detection significance of X-ray pulses the Crab pulsar and nebula
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» Pulse signals are detectable within 1 sec
» Free from pileups, dead time, and data transfer loss (throughput 3.8x104 cps).



Best Use of the NICER Telescope’s Performance?

Large effective area (~1900 cmZ? at 1.5 keV)

High-time resolution (<100 ns)

Free from pileups, dead time, and data transfer loss (up to ~4x104 cps)

> W -

Flexible observations (quick response to ToO, even within a day)

- Examples and applications

» Discovery of an X-ray enhancement at the Crab giant radio pulses

- Prompt follow-ups of new magnetars to identify pulsar characteristics
» Comprehensive studies of magnetar short bursts

» Search for gravitational waves from rotation powered pulsars

» Automated transient alert system from MAXI (OHMAN project)



Giant radio Pulses (GPs) from rotation-powered pulsars

o Sporadic sub-millisecond radio bursts 102-3 times brighter than the normal pulses.
* Only from known ~12 sources, power-law distribution of fluence.
* Fast radio bursts (FRBs) are extragalactic GPs from young and energetic pulsars?
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GPs from the Crab Pulsar /\L S
Crab pulsar has been observed in almost N é‘ A Lowiradio
all electromagnetic waves, including radio, - §
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Example of a GP

GPs from the Crab Pulsar 4

| X band -
. 27 :

 Crab pulsar has been observed in almost -
all electromagnetic waves, including radio, O R
infrared, optical, X-rays, and gamma rays. 5t Cband
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 GPs of the Crab Pulsar randomly occur in
the radio band at the main or inter pulses.
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 (GPs were thought to be a phenomenon
observed only at radio. However optical
enhancement coinciding with GPs was
discovered (Shearer et al., Science 2003).
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Two Radio Observatories (2 GHz) in Japan
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* 34-m radio telescope of the Kashima *+ 64-m radio dish of the Usuda Deep
Space Technology Center (NICT) Space Center (JAXA) »



Long-term monitoring simultaneous In radio and X-rays

Coordinated 15 observations with the two radio telescopes in 2017-2019

X-ray counts per phase bin

The X-ray main pulse peak $=0.99125+0.00004 relative to the radio peak,

corresponding to the source-intrinsic 304 us radio delay.
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Discovery of X-ray enhancement coinciding with GPs
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» Detected ~2.5x104 GPs at the main pulse phase with the 1.5-day exposure
in total accumulated in 2017-2019.

Enoto et al., Science, 2021



Discovery of X-ray enhancement coinciding with GPs
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» X-ray enhancement of 3.8+0.7% (10 error) at the pulse phase $=0.985-0.997.



Discovery of X-ray enhancement coinciding with GPs
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» X-ray enhancement of 3.8+0.7% (10 error) at the pulse phase ¢=0.985-0.997.



Verified our X-ray detection
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« We confirmed this detection via different verifications. -

Enoto et al., Science, 2021



Implication for the mystery of FRBs

* Hypothetical bright GP is a candidate for the origin of FRBs, especially
repeating FRB sources (e.qg., repeating FRB 121102).

* The energy source of such FRBs is assumed to be the spin-down luminosity.
* The discovery of X-ray enhancement suggests:

» Since bolometric luminosity of GPs, including X-rays, is revealed to be 102-3
times higher than we previously thought, the simple GP model for FRBs
became more difficult because pulsars quickly lose its rotational energy.

* Another example of the connection between the coherent radio emission
and incoherent X-ray radiation in the neutron star magnetosphere.

See the supplementary part of Enoto et al., Science 2021
Kashiyama & Murase, 2017; Kisaka, Enoto, Shibata 2017



Magnetars seen with NICER

e >2,500 known pulsars (10° in our Galaxy?)

* Challenge to unification of different
neutron star classes
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Magnetars seen with NICER

>2,500 known pulsars (10° in our Galaxy?)

e Challenge to unification of different
neutron star classes

NICER Magnetar and Magnetosphere
(M&M) subgroup is focusing on highly
magnetized sources.

* Collaborating with radio telescopes

'Radio (8.3 GHz)
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https://ui.adsabs.harvard.edu/abs/2020arXiv200508410P/abstract

NICER Follow-ups of Magnetar Outbursts

» Since the launch in 2017, one transient magnetar campaign per year on average.

Source Reference

Re-brightening in 2017

2017 July 4U 0142+61 Pulse morphology change
2020 March  Switt J1818.0-1607 o (TR o Rajwade el al, 2022
2020 October  SGR 18300645 | = peak ?r?iztrzrtion Cofl zolati ot . 2021

New magnetar

2021 June Swift J1555.2-5402 .
Long lasting outburst

Enoto et al., 2021
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SGR 1935+2154 — Magnetar and FRB connection

6- T FRB

» (Galactic magnetar SGR 1935+2154
e discovered in 2014 (~9 kpc?)
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https://ui.adsabs.harvard.edu/abs/2020arXiv200907886Y/abstract

FRB detected from SGR 1935+2154

 [wo-peak FRB coincided with a magnetar
X-ray burst (Insight-HMXT, INTEGRAL,
AGILE, and Konus-Wind)
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https://arxiv.org/abs/2005.10324
https://arxiv.org/abs/2005.10324
https://ui.adsabs.harvard.edu/abs/2020arXiv200511071L/abstract

FRB-associated burst vs. Other magnetar bursts
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https://ui.adsabs.harvard.edu/abs/2020arXiv200611358Y/abstract

X-ray burst spectrum: FRB-associated vs. others
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o Cutoff energy vs. X-ray flux
in 1-250 keV.

* Brighter magnetar short
burst shows higher cutoff
energy.

o X-ray flux of the FRB-
associated burst is In the
distribution of the other
(canonical) magnetar bursts.

 However, the cutoff energy
of the FRB-associated one
IS higher than the others.


https://ui.adsabs.harvard.edu/abs/2020arXiv200611358Y/abstract

At which pulse phase the FRB event happened?
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* Pulse profile of SGR 1935+2154 at 1 day and 21-39 days after the burst
* Folded burst peak time (light blue) does not show a clear pulse profile.
* The pulse phase of the FRB event happened at the peak of the pulse profile.

Younes et al., arXiv:2009.07886



https://ui.adsabs.harvard.edu/abs/2020arXiv200907886Y/abstract

Comprehensive Studies of Magnetar Short Bursts

NICER 2-8 keV Counts

Swift 15-150 keV Counts
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NICER'’s large effective area is ideal to search for weak short bursts

M&M team is working for comprehensive studies of magnetar short bursts.
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SGR 1830-0645 — Pulse Peak Migration

0.8-7 keV
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» Near-daily NICER observation during the first 37 days of an
outburst suggested pulse peak migration in phase.

» Tectonic motion of the crust? Inferred speed of the crustal
motion is <100 m/day.

- Hot spot of particle bombardment from a twisted
magnetosphere — untwist and dissipate on 30-40 day
timescale?
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Swift J1555.2-5402 — New magnetar in 2021
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Searching for Gravitational
Waves (GW) from Pulsars

e LIGO/Virgo/KAGRA sensitive at vgw > 20 Hz
~500 pulsars with vspin> 10 Hz

e Most sensitive GW searches use simultaneous EM
timing observations (tracking of pulsar spin)

GW searches of O3 data (2019-20)
e using NICER timing of
e young magnetic pulsars (Abbott+2021a,b;
2022b,c)
pulsar glitches (Abbott+2022b)
» accreting millisecond pulsars (Abbott+2022a)
6 of 24 below “spin-down limit” are due to NICER
timing
e constraints on neutron star mountains and
oscillations
Multi-messenger future with GWs and NICER
O4 to take place 2023 Mar to 2024 Feb

29 ° NICER pulsar timing project approved thru 2024 Feb
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NICER Follow-up Observations of MAXI Transients
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* NICER and MAXI joint teams have been organizing
systematic agile follow-up and subsequent
monitoring of MAXI-discovered X-ray transients.

* This is the key why NICER data sets in early
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outbursts are available for discoveries.
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* 61 transients were observed by Feb 2022, most of _;) T T

which are within 12 hours of their discoveries. Energy (keV)
Successftul follow-up of a long X-ray

burst within 3 hours of the discovery
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OHMAN (On-orbit Hookup of MAXI and NICER)

* Fully automatic follow-up observation system beyond the national border in ISS
* Primarily targets are unknown MAXI transients, stellar flares, long X-ray bursts, etc.
o Started in 2022 June, and expected trigger rate is about once a month

SGR 1935+2154

short burst
MAXI , 2022/5/23
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« MAXI has detected 3 short bursts
R O\ 550 b from SGR 1935+2154 since 2020.
2. Detect transients RS2 208 toe 00, » OHMAN will enable NICER to

by a laptop on ISS S 3 ¢ A observe persistent emission
| immediately after a short burst

(targets within 2 minutes) Slide credit: Wataru Buz Iwakiri 31



Summary

1. Advantages of the NICER performance are large effective area (~1900 cm?2
at 1.5 keV), high-time resolution (<100 ns), high throughput (free from
pileups, dead time, and data transfer loss up to ~4x104 cps), and flexible
observations (quick response to ToO, even within a day).

2. Here we showed some examples and applications:

a) Discovery of an X-ray enhancement at the Crab giant radio pulses
b) Prompt follow-ups of transient magnetars and burst studies

c) Long-term monitoring of magnetar pulse profile (migration)

d) Search for gravitational waves from rotation powered pulsars

Automated transient alert system from MAXI (OHMAN project)
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