Leveraging NICER to Understand Accretion in NS LMXBs

Dr. Renee Ludlam
Assistant Professor
Wayne State University
⊠: renee.ludlam@wayne.edu

Why Study Disk Reflection in Neutron Stars?

- The disk must truncate at or prior to the neutron star (NS) surface
- If R_{NS} < innermost stable circular orbit (ISCO); rule out equations of state that predict a larger radius

• Can constrain properties of the disk and NS itself

X-ray Emission & Reflection

Line Broadening Effects

- Degree of broadening in the red wing directly correlates with proximity to compact object.
- Broadening in the blue wing indicates inclination.

Fabian+ 1989

Dauser+ 2010, 2013

Fe K Line with NICER

- The predicted line profile (red) from the fully self-consistent reflection model RELXILLNS (García+ 2022)
 - High density disk near 10¹⁹ cm⁻³
 - Both the Fe XXV and Fe XXVI K alpha lines are produced at similar strength

> This highlights energy resolution of *NICER* and the need to fit a reflection spectrum.

Low-Energy Emission Lines with NICER

- The Fe L complex with the best fit model predicted line profile from relxillNS (red) and the local-frame emission (blue) for comparison.
- The O VIII line region with the best fit model predicted line profile from xillverCO (teal) and the local-frame emission (orange) for comparison.

NICER's Collecting Area

 \geq There is \geq 2x (5x) more collecting area in the O VIII (Fe L) band than in the Fe K band

Collecting Area of NICER & NuSTAR

Probes with Multiple Emission Lines

- Additional constraint on the position of the inner disk
- Disk structure
 - Ionization (ξ) with radius (R)
 - Illumination source geometry

Joint NICER-NuSTAR Spectra of 4U 1735-44

- Clear evidence of reflection, but no lower-energy emission feature in the spectrum
- Need a unique set of conditions for Fe L:
 - Density
 - Ionization
 - Low Column Density
 - Thermal component

Ultra-compact X-ray Binaries

- Orbital periods of < 90 minutes
- Donor companion WD or He stars
- Typically Fe is the most prominent feature, but O takes center stage

Joint NICER-NuSTAR Spectra

Radius Estimates from Other Spectral Components

Spherical emission \rightarrow Narrow banded emission with a height 5%-10% the radial extent

Cygnus X-2

- Binary orbital period of 9.8 days at an inclination of ~63 degrees
- Has an optically determined mass estimate of $M_{NS} = 1.71 \pm 0.21 \, M_{\odot}$ (Casares+ 2008)
- Spectra with >10⁶ counts/spec
 - (a) Normal Branch from Obs1
 - (b) Vertex from Obs2
 - (c) Horizontal Branch from Obs3

Spectral Modeling

Adapted from Ludlam+ 2022

 $R_g = GM_{NS}/c^2$ $M_{NS} = 1.71 \pm 0.21 M_{\odot}$

- *R_{NS}* ≤ 19.5 km for *M* = 1.92 *M*_☉
 R_{NS} ≤ 15.3 km for *M* = 1.50 *M*_☉
- R+2019: Riley+ 2019, ApJL, 887, L21
- M+2019: Miller+ 2019, ApJL, 887, L24
- R+2021: Riley+ 2021, ApJL, 918, L27
- M+2021: Miller+ 2021, ApJL, 918, L28
- GW constraint from Raiijmakers+ 2021, ApJL, 918, L29

Conclusion

Combined passband of *NICER* and *NuSTAR* can reveal the entire reflection spectrum and shed light on accretion disk properties

The NICER and NuSTAR crosscalibration constant within 5% with a small slope offset between missions

