

# Background Models & Screening for Quality Control

Ron Remillard (MIT)
NICER Proposers' Workshop
2022 0901



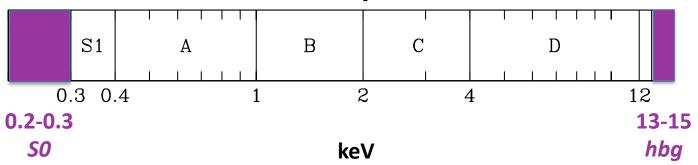


- Why/What/How of Data Screening?
- Define GTIs to avoid systematic errors
- Effects of Screening on Light Curves
- Reality vs.BG at GTI timescales (300 s) or less
- Systematics at Very Long Timescales

NICER data analyses is best approached with informed efforts for quality control

# **Need Screening for Data Quality**




#### Why Screen BG-subtracted Spectra?:

- NICER Background (BG) is complicated (Craig's talk yesterday)
- Detectors are single channel; no separate BG obs. per target
- BG residuals for BKGD pointings: problems, especially when BG is high (for 3C450 model, see Remillard et al. 2022, AJ, 163, 130)
- Optical Loading (obs. in sunlight) increases noise above 0.2 keV and must be modeled

# Visualizing Screening



Graphical Picture of NICER Energy Bands (one perspective)
Consider BG-subtracted Spectra in these Bands



- extractions from cleaned event lists → 0.2-15 keV
- $SO_{net}$  and  $hbg_{net}$  are the screening bands (usually expect zero)
- $SO_{net}$  informs safe use of S1 in spectral fits, when noise is increased by optical loading (or S1 informs safety of A edge)
- hbg<sub>net</sub> gives feedback on correct shape of hard X-ray BG prediction
- can be relevant to any BG model

# Screening Levels



#### Suggestions for 3C50 model (Remillard et al. 2022, AJ, 163, 130)

- Level 1 (all sources) select:  $-30 < SO_{net} < 30 \text{ c/s}$ ;  $-0.5 < hbg_{net} < 0.5$
- Level 2 (20-300 c/s\*) select:  $-10 < SO_{net} < 10$  c/s ;  $-0.1 < hbg_{net} < 0.1$
- Level 3 ( < 20 c/s\*) select:  $-2.0 < SO_{net} < 2.0$  c/s;  $-0.05 < hbg_{net} < 0.05$

#### Soft, rotation-powered, msec pulsars (Salmi et al. 2022, submitted)

• Level 4 soft (< 1 c/s\*\*) select:  $-0.15 < SO_{net} < 0.15$  c/s ;  $-0.05 < hbg_{net} < 0.05$   $-0.1 < C_{net} < 0.1$  ;  $-0.3 < D_{net} < 0.3$ 

<sup>\*</sup> net count rate at 0.4-12 keV

<sup>\*\*</sup> soft, net count rate at 0.3-2.0 keV; no detection  $C_{net}$ ,  $D_{net}$  in 100 ks

## Define GTIs to Avoid Systematic Errors



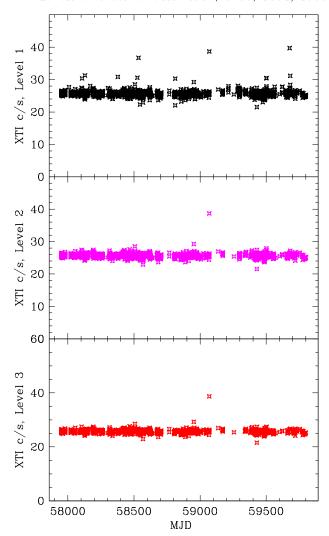
#### GTI intervals to avoid systematic problems (3C50 model)

- Sample ISS orbit (5560 s) with 4-5 intervals for each (of 4) passages, equator to polar (52°) to reduce nonlinear effects; → 300 s target interval per GTI
- Avoid GTIs < 50 s: weak statistics in *ibg* (*hrej* can be replaced by *corsax*)
- Sunshine transitions can show jumps in *nz*; Mask +/- 30-s from each transition (early sunlight from ISS structures; *nz* rampdown in FPMs after ISS sunset).

#### Steps for GTI-based BG modeling

- run nimaketime twice ("....and.SUNSHINE.eq.0") and ("....and.SUNSHINE.eq.1")
- collect each GTI set (MET start and stop) and add a column 1/0 for SUNSHINE
- merge GTI tables and make a tool to mask 30 s on each side of any 1/0 transition
- $\triangleright$  ignore gaps <= 2 s at fixed SUNSHINE; then ignore GTIs with dt < 50 s
- $\triangleright$  break up any interval dt > 450 s into N GTIs, N = int (dt / 300 + 0.5)
- index the final GTI list and use index number in all downstream extractions

## Screening NICER Light Curves



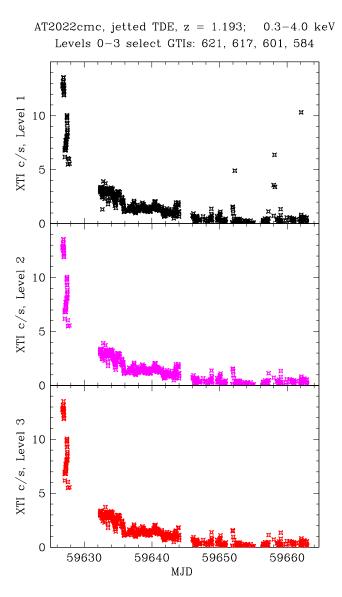

#### 1E0102-7129 SNR in SMC

0.3-4.0 keV screening levels 1,2,3

- screening level 2 sufficient
- polar declination;
   obs. latitudes +10.7 to -51.7
- two additional points off scale in all plots
- three worst level-2 GTIs: sat\_lat -49.6, -49.0, -50.9, with hard flares (predicted BG shape is wrong)
- however, many more GTIs with sat\_lat < -49 are OK</li>

1E0102.2-7219: Calibration Source, SNR in SMC; 0.3-4.0 keV Levels 0-3 select GTIs: 2380, 2085, 1831, 1588




# Screening NICER Light Curves

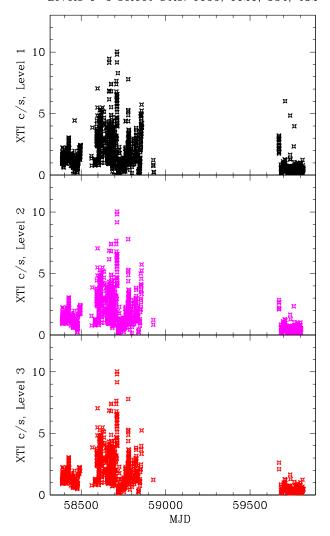


AT2022cmc, Jetted TDE, z = 1.193 Pasham et al 2022, submitted 0.3-4.0 keV

screening levels 1,2,3

filter level 2 sufficient



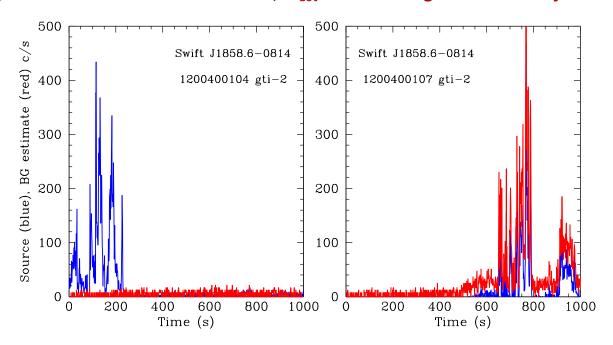

# Screening NICER Light Curves



AT2018fyk (ASASSN-18ul)
TDE with recurrence; z = 0.059
screening levels 1,2,3

- Level 2 usually sufficient
- Fast "flares" deserve additional investigation

ASASSN-18ul, TDE with recurrence, z = 0.059; 0.3-2.0 keV Levels 0-3 select GTIs: 1055, 1026, 834, 482




#### Reality Diagnostics at T < 300 s



#### Plot BG metrics vs. G-subtracted Light Curve

example: SAX J1858 (Remillard et al. 2022, AJ, 163, 130) plot 1-s light curve vs. BG estimator,  $R_{est} = 2.91 * ibg + 4.67 * hrej$ 



- can plot other diagnostic quantities in same way
- get to know the filter files (\$obsid/auxil/ni\$obsid.mkf.gz)

# Reality Diagnostics at T < 300 s



#### Filter Files: Information at 1 s relevant to evaluation data quality

Satellite Parameters: use bincurve; find avg/GTI warnings
 COR\_SAX (cutoff rigidity for SAX) cor\_sax < 2.0
 SAT\_LAT (satellite position latitude) |lat| > 45°

Particle Environment [56]; (use ftlist; choose selected FPMs)

Soft Noise [56]; (use ftlist; choose selected FPMs)

```
MPU_NOISE25_COUNT [56] = nz [56] plot nz during GTI MPU_UNDER_COUNT [56] = undershoot rates [56] plot undershoots in GTI
```



# Pushing limits: Deep Spectra and BG uncertainty (3C50) for rotation powereed msec pulsars

(Salmi et al. 2022, submitted)

- Screening at level 4-soft
- Opportunity: Ms data sets, observing a constant, faint source
- Variations in subsamples (6-9 samples, 100-200 ks each) caused by systematic uncertainty in the BG model

# Long Timescales: PSR J0030+0451



#### example: PSR J0030+0451: level 4-soft

| Screening Step                                                                                                                              | #GTIs | Expos.(ks)  | <u>Percent</u> |
|---------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------|----------------|
| All GTIs (nimaketime w/defaults) GTIs within 3C50 Model Limits Exposure > 200 s Low noise (nz < 220 c/s)                                    | 11196 | 3038        | 100.           |
|                                                                                                                                             | 11195 | 3037        | 100            |
|                                                                                                                                             | 9702  | 2857        | 94.1           |
|                                                                                                                                             | 8301  | 2446        | 80.5           |
| Low BG ( $ibg < 0.2 \text{ c/s}$ ) BGsub: $ hbg_{net}  < 0.05$ BGsub: $ SO_{net}  < 0.15$ BGsub: $ D_{net}  < 0.3$ BGsub: $ C_{net}  < 0.1$ | 7848  | 2313        | 76.2           |
|                                                                                                                                             | 7700  | 2272        | 75.0           |
|                                                                                                                                             | 7614  | 2247        | 74.8           |
|                                                                                                                                             | 7229  | 2133        | 60.2           |
|                                                                                                                                             | 6647  | <b>1948</b> | <b>64.1</b>    |

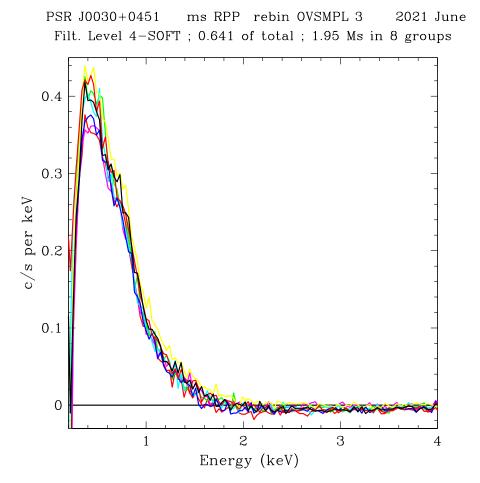
ibg: raw, in-focus, 15-18 keV

Filter: BG-subtracted *hbg<sub>net</sub>* (13–15 keV)

Filter: BG-subtracted  $SO_{net}$  (0.2–0.3 keV)

Filter: BG-subtracted  $D_{net}$  (4-12 keV)

Filter: BG-subtracted  $C_{net}$  (2-4 keV)


### Long Timescales: PSR J0030+0451



#### **Screening level 4-soft**

selected (64.1%) GTIs: 1.95 Ms in 9 intervals (~217 ks each)

0.3-2.0 keV 0.234 c/s rms<sub>9</sub> 0.018 c/s



## Long Timescales: 8 Pulsars

| 1 i |    |  |
|-----|----|--|
|     |    |  |
|     | 17 |  |
|     |    |  |

| <u>Pulsar</u> | Selected (ks)     | sub# | <u>c/s 0.3-2.0 keV</u> | <u>2-4 keV</u>         | <u>4-12 keV</u> |
|---------------|-------------------|------|------------------------|------------------------|-----------------|
| PSR B0656     | 194/283 (68.7%)   | 4    | 8.186 (0.020)          | 0.0004 (0.005)         | -0.002 (0.007)  |
| PSR B1821     | 789/1139 (69.3%)  | 8    | 0.666 (0.020)          | <b>0.075</b> * (0.008) | 0.024 (0.010)   |
| PSR J0030     | 1984/3078 (64.4%) | 9    | 0.234 (0.018)          | -0.008 (0.005)         | -0.002 (0.010)  |
| PSR J1614     | 572/1049 (54.5%)  | 5    | 0.216 (0.018)          | -0.003 (0.003)         | 0.006 (0.007)   |
| PSR J1231     | 1670/2981 (55.3%) | 8    | 0.163 (0.019)          | -0.013 (0.006)         | -0.009 (0.008)  |
| PSR J0614     | 726/1250 (58.1%)  | 6    | 0.062 (0.016)          | -0.011 (0.008)         | -0.010 (0.011)  |
| PSR J0740     | 1713/2790 (61.4%) | 8    | 0.028 (0.020)          | -0.004 (0.010)         | -0.006 (0.011)  |
| PSR B1937     | 1079/2562 (42.1%) | 6    | -0.085 (0.015)         | 0.004 (0.007)          | -0.001 (0.012)  |

count rates are for the NICER FOV, not necessarily isolating the pulsar additional systematic concerns: biases in the NICER BKGD fields (libraries); confusion limit \*this source was not filtered for  $C_{net}$ ,  $D_{net}$ 

- Estimate BG + Systematic Uncertainty (1σ) from subsamples' avg. rms
   0.018
   0.007
   0.010
- Uncertainties scale to shape of BG spectrum; uncertainty scale is 2%
- Test Bed for other BG Models

# Summary



- Background models are still evolving : SCORPEON and 6C50 (empirical companion)
- Screening BG-subtracted spectra in bands S0 and hbg is a useful tool for quality control
- Despite model problems one can "go deep" with 60% of data and reach uncertainty ~2% of average background
- NICER users should embrace hands-on expectations (i.e., familiarity with diagnostics and filter files)