## A multi-wavelength study of the first gamma-ray emitting LMXB XSS J12270-4859

Saitou et al. 2009, PASJ, 61, L13 Saitou et al. 2011, PASJ, in press (Suzaku special issue; arXiv:1105.4717)

#### Kei Saitou (ISAS / Univ. of Tokyo) E-mail: ksaitou@astro.isas.jaxa.jp

M. Tsujimoto<sup>1</sup>, K. Ebisawa<sup>1</sup>, M. Ishida<sup>1</sup>, K. Mukai<sup>2</sup>, T. Nagayama<sup>3</sup>, S. Nishiyama<sup>4</sup>, P. Gandhi<sup>1</sup> (1: ISAS, 2: NASA/GSFC, 3: Nagoya Univ., 4: NAOJ)



the



Fermi detected 1451  $\gamma$ -ray sources (Abdo+ 2010) Most are AGN, some are Galactic sources. Half of them are un-IDed. 3 HMXB

Pulsar

SNR

AGN

**Un-IDed** 

There are many un-IDed Galactic sources.

So, there must be new classes of Galactic sources.

Goal of this study: to find  $\gamma$ -ray emitting LMXBs

# Approach

## 1. Find LMXBs from the INTEGRAL catalog.

- Optical spectroscopy can find CVs and LMXBs. (Masetti+ 2006; Pretorius 2009)
- X-ray observations distinguish CVs and LMXBs. (Saitou+ 2009)
  - CVs: Fe lines, long-term variability (~hours). LMXBs: no Fe lines, short-term variability (~sec).

## 2. Find the Fermi counterpart.

- Correlation of  $\gamma$ -ray and others. (de Martino+ 2010; Hill+ 2011)

### 3. Reveal the nature.

- Simultaneous X-ray / IR observations. (Saitou+ 2011)
- Broad-band SED. (Saitou+ 2011)

### 2. LMXB? - Optical spectroscopy

We observed INTEGRAL sources with Suzaku.

## XSS J12270-4859

- discovered by RXTE (Revnivtsev+ 2004)
- re-discovered by INTEGRAL (Bird+ 2007)
- a binary system with a low-mass companion by follow-up optical spectroscopy (Masetti+ 2006; Pretorius 2009)

#### 2. LMXB? - Optical spectroscopy

We observed INTEGRAL sources with Suzaku.



#### 2. LMXB? - Optical spectroscopy

We observed INTEGRAL sources with Suzaku.



## 2. LMXB? - X-ray spectroscopy



#### 2. LMXB? - X-ray spectroscopy



## 2. LMXB? - X-ray light curve

Flares (~250 s), Dips, and Hardenings



## 2. LMXB? - X-ray light curve

Flares (~250 s), Dips, and Hardenings



## 2. LMXB? - X-ray light curve

Flares (~250 s), Dips, and Hardenings



#### 3. Fermi counterpart? - $\gamma$ -ray and radio



(de Martino+ 2010)





#### 3. Fermi counterpart? - $\gamma$ -ray and radio





(de Martino+ 2010)

### XSS J12270-4859 is a Fermi source and a radio source

#### 4. Nature? - Simultaneous X-ray / IR

X-ray (RXTE; 2-10 keV) and NIR (IRSF; J, H, Ks) observations (PI: Saitou)



#### 4. Nature? - Broad-band SED



#### 4. Nature? - Broad-band SED



- 1. Find LMXBs from the INTEGRAL catalog. Suzaku revealed the source is a LMXB.
- **2. Find the Fermi counterpart.** The source has the Fermi counterpart.
- 3. Reveal the nature.

A microquasar with a synchrotron jet.

At 1 kpc,  $L_{bol}$  ~10<sup>34</sup> erg/s, ~10<sup>-4</sup>  $L_{Edd}$  for 1  $M_{\odot}$ .

## XSS J12270-4859 is

- the first  $\gamma$ -ray emitting LMXB
- a microquasar at low luminosity state

#### **5.** Discussion

#### XSS J12270-4859 shows characteristic variability



## Are there similar variable sources?

#### Yes.

Similar variable source IGR J17091-3624 is discovered (Altamirano+ 2011).

#### **5. Discussion**



## Are there similar variable sources?

Yes.

Similar variable source IGR J17091-3624 is discovered (Altamirano+ 2011).

Similar variable  $\gamma$ -ray sources may be still hidden in the Galaxy.

#### 6. Summary

## Lots of un-IDed Galactic sources in the Fermi catalog. There must be new classes of sources.

# XSS J12270-4859 is a good example.

- first  $\gamma$ -ray LMXB at low L<sub>bol</sub>
- microquasar with a synchrotron jet
- unique X-ray variability

In the future, eROSITA & ASTRO-H are helpful to identify these un-IDed Fermi sources.

## A multi-wavelength study of the first gamma-ray emitting LMXB XSS J12270-4859

Saitou et al. 2009, PASJ, 61, L13 Saitou et al. 2011, PASJ, in press (Suzaku special issue; arXiv:1105.4717)

#### Kei Saitou (ISAS / Univ. of Tokyo) E-mail: ksaitou@astro.isas.jaxa.jp

M. Tsujimoto<sup>1</sup>, K. Ebisawa<sup>1</sup>, M. Ishida<sup>1</sup>, K. Mukai<sup>2</sup>, T. Nagayama<sup>3</sup>, S. Nishiyama<sup>4</sup>, P. Gandhi<sup>1</sup> (1: ISAS, 2: NASA/GSFC, 3: Nagoya Univ., 4: NAOJ)

#### References

- Abdo et al. 2011, ApJS, 188, 405
- Altamirano et al. 2011, ATel, 3299
- Bird et al. 2007, ApJS, 170, 175
- de Martino et al. 2010, A&A, 515, A25
- Hill et al. 2011, MNRAS, 415, 235
- Masetti et al. 2006, A&A, 459, 21
- Pretorius 2009, MNRAS, 395, 386
- Revnivtsev et al. 2004, A&A, 418, 927
- Saitou et al. 2009, PASJ, 61, L13
- Saitou et al. 2011, PASJ, in press. (arXiv: 1105.4717)