Suzaku's View of Inner Disk Eclipses in NGC 1365

Laura Brenneman

<u>Ged la boot-stroits</u> is Gruitoho Cistali tifo il Mantoip lighsiss,

Explotings the Ynolld binishers the hazake Drow Billy and

July 22, 2011

NGC 1365 Background

- Barred spiral galaxy 200,000 ly across at z=0.0055 (60 Mly) in Fornax cluster.
- Bar linked to circumnuclear starburst activity ~1.3 kpc from nucleus, extended and diffuse X-ray emission (photoionized and collisionally ionized gas, e.g., Wang+ 10, Guainazzi+ 10).
- Sy 2 AGN with SMBH at core estimated at $3.2 \times 10^7 \, M_{\odot}$ with $L_{bol}/L_{Edd} \sim 0.02$ (Vasudevan+ 09).
- Relativistic reflection, cold and ionized absorption seen.

Previous Observations of NGC 1365

~300-ks *Suzaku* XIS (2007) shows two distinct spectral shapes at different times.

Degeneracy between N_H and f_{cov} can be broken!!

Eclipses of the Inner Accretion Disk?

- Flux varies by factor of ~10.
- Broad Fe K α line continuously reported since 1997 (ASCA).
- Compton-thin and —thick eclipses observed in X-ray observations from 2005 onward: *Chandra, XMM, Suzaku...* consistent with BLR clouds.

Risaliti+ (2005, 2007, 2009); Maiolino+ (2010)

credit: NASA/CXC/M. Weiss

Broad Fe KX Line Variations During a Compton-thick Eclipse

Definitive proof of inner disk reflection... <u>need a revised model with eclipses!</u> Subject of current theoretical work by Brenneman, Risaliti, Reynolds, Elvis & McDowell (in prep.).

NGC 1365: Suzaku Long Program

Brenneman, Risaliti & Elvis (2011, in prep.)

Spectral Variability

Time-averaged Spectra

Observation 2:

 $Flux_{2-10} = 4.04 \times 10^{-12} ergs cm^{-2} s^{-1}$ $\Gamma \sim 1.79$

 $N_{H(cold)} \sim 1.1 \times 10^{24} \text{ cm}^{-2}$ $N_{H(warm)} \leq 10^{22} \text{ cm}^{-2}$

 $\xi_{abs} \sim 4000 \ erg \ cm \ s^{\text{-}1}$

 $A_{rel}/A_{PL} \sim 0.20$

Disk $r_{in} \sim 1.3 r_g$

Observation 1:

 $Flux_{2-10} = 6.15 \times 10^{-12} ergs cm^{-2} s^{-1}$

 $\Gamma \sim 1.79$

 $N_{H(cold)} \sim 5.7 \times 10^{23} \text{ cm}^{-2}$

 $N_{H(warm)} \sim 1.2 \text{ x } 10^{23} \text{ cm}^{-2}$

 $\xi_{abs} \sim 4000 \ erg \ cm \ s^{-1}$

 $A_{rel}/A_{PL} \sim 0.05$

Disk $r_{in} \sim 1.9 r_g$

Eclipses in Observation 1...

- Identify candidate eclipse events through light curve, hardness ratio.
- Isolate five intervals, two characteristic "dips" in Obs 1.

 Main change between periods is in cold absorber N_H:

$$48\pm 4 \rightarrow 75\pm 5 \rightarrow 56\pm 4 \rightarrow 62\pm 4 \rightarrow 83\pm 6$$
 (in units of 10^{22} cm⁻²)

• All other parameters have $\Delta \le 10\%$ except PL, which changes by $\sim 1.8x$.

...and Observation 2

- Spectrum changes less overall during Obs 2 than in Obs 1.
- Overall flux down by ~1.3x from Obs 1.
- r_{in} is marginally closer in (~1.3 r_g vs. ~1.9 r_g in Obs 1), but difficult to constrain in time-resolved spectra.

 Cold N_H changes not as pronounced or as dominant as in Obs 1:

$$112\pm4 \rightarrow 123\pm13 \rightarrow 112\pm11 \rightarrow 99\pm1 \rightarrow 112\pm10 \rightarrow 140\pm16$$
 (in units of 10^{22} cm⁻²)

• Also see ΔN_H (warm) $\sim 2x$, $\Delta PL \sim 1.5x$.

- NGC 1365 is a Sy 2 AGN displaying:
 - extended, ~constant starburst emission (thermal and photoionized)
 - hard X-ray continuum (coronal vs. jet base?)
 - highly ionized, outflowing wind ($v_{out} \sim 1000-5000 \text{ km/s}$)
 - variable, cold absorber ($f_{cov} \ge 95\%$, $N_H \sim 10^{23-24}$ cm⁻²)
 - relativistic reflection from the inner accretion disk (Fe/solar ~ 2.5 , log $\xi \le 1$)
 - distant reflection from outer disk or torus (~constant)
- All components change on timescales of "tens of ks except distant reflection.
- Eclipses going from Compton-thin to –thick state have potential to provide *irrefutable* proof of relativistic nature of broad Fe K α line via accretion disk tomography.
- Our 450-ks Suzaku LP found four eclipse events, but none going from Comptonthin to —thick with large enough ΔN_H to perform this experiment.
- More long observing campaigns needed! Suzaku, Astro-H, XMM+NuSTAR.

- NGC 1365 is a Sy 2 AGN displaying:
 - extended, ~constant starburst emission (thermal and photoionized)
 - hard X-ray continuum (coronal vs. jet base?)
 - highly ionized, outflowing wind ($v_{out} \sim 1000-5000 \text{ km/s}$)
 - variable, cold absorber ($f_{cov} \sim 95\%$, $N_H \sim 10^{23-24}$ cm⁻²)
 - relativistic reflection from the inner accretion disk (Fe/solar ~ 2.5 , log $\xi \le 1$)
 - distant reflection from outer disk or torus (~constant)
- All components change on timescales of ~tens of ks except distant reflection.
- Eclipses going from Compton-thin to —thick state have potential to provide *irrefutable* proof of relativistic nature of broad Fe K α line via accretion disk tomography.
- Our 450-ks Suzaku LP found four eclipse events, but none going from Comptonthin to —thick with large enough ΔN_H to perform this experiment.
- More long observing campaigns needed! Suzaku, Astro-H, XMM+NuSTAR.

- NGC 1365 is a Sy 2 AGN displaying:
 - extended, ~constant starburst emission (thermal and photoionized)
 - hard X-ray continuum (coronal vs. jet base?)
 - highly ionized, outflowing wind ($v_{out} \sim 1000-5000 \text{ km/s}$)
 - variable, cold absorber ($f_{cov} \sim 95\%$, $N_H \sim 10^{23-24}$ cm⁻²)
 - relativistic reflection from the inner accretion disk (Fe/solar ~ 2.5 , log $\xi \le 1$)
 - distant reflection from outer disk or torus (~constant)
- All components change on timescales of "tens of ks except distant reflection.
- Eclipses going from Compton-thin to –thick state have potential to provide <u>irrefutable</u> proof of relativistic nature of broad Fe Kα line via accretion disk tomography.
- Our 450-ks Suzaku LP found four eclipse events, but none going from Comptonthin to —thick with large enough ΔN_H to perform this experiment.
- More long observing campaigns needed! Suzaku, Astro-H, XMM+NuSTAR.

- NGC 1365 is a Sy 2 AGN displaying:
 - extended, ~constant starburst emission (thermal and photoionized)
 - hard X-ray continuum (coronal vs. jet base?)
 - highly ionized, outflowing wind ($v_{out} \sim 1000-5000 \text{ km/s}$)
 - variable, cold absorber ($f_{cov} \sim 95\%$, $N_H \sim 10^{23-24}$ cm⁻²)
 - relativistic reflection from the inner accretion disk (Fe/solar ~ 2.5 , log $\xi \le 1$)
 - distant reflection from outer disk or torus (~constant)
- All components change on timescales of "tens of ks except distant reflection.
- Eclipses going from Compton-thin to –thick state have potential to provide *irrefutable* proof of relativistic nature of broad Fe K α line via accretion disk tomography.
- Our 450-ks Suzaku LP found four eclipse events, but none going from Compton-thin to –thick with large enough ΔN_H to perform this experiment.
- More long observing campaigns needed! Suzaku, Astro-H, XMM+NuSTAR.

- NGC 1365 is a Sy 2 AGN displaying:
 - extended, ~constant starburst emission (thermal and photoionized)
 - hard X-ray continuum (coronal vs. jet base?)
 - highly ionized, outflowing wind ($v_{out} \sim 1000-5000 \text{ km/s}$)
 - variable, cold absorber ($f_{cov} \sim 95\%$, $N_H \sim 10^{23-24}$ cm⁻²)
 - relativistic reflection from the inner accretion disk (Fe/solar ~ 2.5 , log $\xi \le 1$)
 - distant reflection from outer disk or torus (~constant)
- All components change on timescales of "tens of ks except distant reflection.
- Eclipses going from Compton-thin to —thick state have potential to provide *irrefutable* proof of relativistic nature of broad Fe Kα line via accretion disk tomography.
- Our 450-ks Suzaku LP found four eclipse events, but none going from Comptonthin to —thick with large enough ΔN_H to perform this experiment.
- More long observing campaigns needed! Suzaku, Astro-H, XMM+NuSTAR.