

## Suzaku Future Impact: Compact & Stellar Objects

Günther Hasinger (MPE) 12.12.2007, San Diego

## Iron Lines !



### **Relativistic lines in neutron stars!**



Miller

# GX 349+2 (Sco X-2)



R<sub>in</sub> = 8.0 ± 0.4 R<sub>G</sub> (where R<sub>G</sub>= GM/c<sup>2</sup>)
 Corresponds to 16.5 ± 0.8 km for 1.4 M<sub>☉</sub> NS

Cackett

## Cygnus X-2

Hasinger et al., 1985 (EXOSAT PV observation)



## Cyg X-2: Ginga observations

#### 2 x 4 days continuous observations of Cyg X-2 in June and October 1988.

Hasinger, van der Klis, Ebisawa, Dotani & Mitsuda 1990



→ Do a massive Suzaku observing campaign on Cyg X-2, comparing iron line with z-state and QPO



# Comparison with XMM

- Asymmetric Ser X-1 line also observed by Bhattacharyya & Strohmayer (2007) with XMM-Newton
- Similar profile, though some evidence for variablility - needs further study



Blue - XMM Black - Suzaku

Cackett



Miller

# Getting NS mass using kHz QPOs

- If upper kHz QPO is orbital frequency then ν ~ (GM/R<sup>3</sup>)<sup>1/2</sup>
- We get velocity in disk from iron lines:
  v = (GM/R)<sup>1/2</sup>
- Combining both we can measure NS mass:  $M = v^3 / 2\pi Gv$



Cackett



## Recommendation

Observe 1-2 NS sources for a long time, e.g. one Atoll, one Z-source (~1 Msec observations)

## Relativistic Smearing vs. Absorption

# Broad-band Suzaku Observations reveal the relativistic line/disk reflection in MCG -6-30-15 (Miniutti et al. 2007, PASJ)



### A : Confirming the disk-reflection paradigm



#### Reynolds



Reynolds

### C: Variability of the disk reflection



MCG-6-30-15 : Both iron line <u>and</u> <u>reflection</u> hump unresponsive to continuum changes... contrary to naïve expectation



### PCA deconstruction of MCG -6-30-15 with Suzaku (see L. Miller poster)



## An Alternative to Light-Bending in MCG -6-30-15? (L. Miller poster)



## Long-term Changes in NLS1

Gallo, Tanaka, Boller, Fabian, Vaughan & Brandt, 2004



Two XMM-Newton observations of 1H 0707-495 show dramatic change around the iron edge. Can both be fit equally well with partial covering and (huge) relativistic disc line.



### A Surprise from PDS 456 (preliminary!)



#### Optical type I AGN - but looks like a type II AGN in X-rays!

The hard X-ray data (above 10 keV) show a large x8 excess of flux.

Strongly absorbed ( $N_H > 10^{24} \text{cm}^{-2}$ ) emission emerges above 10 keV.

Absorber must be located *close to black hole* (well within BLR) to *partially cover* X-ray source

Or more exotic - a binary black hole (e.g. NGC 6240)?

Intrinsic X-ray luminosity much higher than is apparent( $L_{2-10}=10^{46}$ erg s<sup>-1,</sup> cf  $L_{bol}=10^{47}$  erg s<sup>-1</sup>)

Reeves

# Can the spectral variability in PDS 456 be explained by variable absorption?



Can rapid variations in the large (10<sup>24</sup> cm<sup>-2</sup>) absorbing column (e.g. covering fraction) account for the spectral var in PDS 456?

Prediction is for *least variability* in the hard X-ray band (i.e. 10 keV).

Absorbing clouds must be compact (few Rg) and close to source (e.g. bricks or a clumpy outflow?)



## NGC1365: Compton thick/Thin



Elvis

## <30 R<sub>S</sub> Tomography of Fe-K Continuum

#### Prospects:

- apply Binary physics
- Ingress, egress successively cover/uncover red-/blueshifted Fe-K
- Establish rotation, z(R)
- Goal of Suzaku Cycle 3 proposal

#### REYNOLDS, RISALITI, ELVIS, ...



#### Elvis

## Recommendation

Beat a few strongly time variable AGN to death (~1 Msec observations)

## Compton-thin and Comptonthick absorption

### **Recent CXB Population Synthesis Model**



## New results on X-ray Background



## Swift BAT Stacks of Seyferts



Ajello et al., 2007: Sy2 are harder than Sy1 and the cutoff energy seems to be different (c.f. Mushotzky's talk)

Need to include this into XRB models to fit data above 50 keV !

## Huge 2-10 keV AGN sample Including COSMOS (~2200 AGN)



## Type1/Type2 Discrimination



# Type-2 fraction vs. Luminosity

Clear trend of less absorption for more 1000 Iuminous AGN in different samples

➔ High-luminosity AGN can clean out their environment

Break-down of the strong unified AGN model



## Evolution of type-2 normalization



Formally consistent with Treister & Urry 2006, but only a 2.5 \_ effect, i.e. not significant. Also consistent with constant.

See also Ueda talk!

## (2) Fraction of Absorbed AGNs

- Our present analysis: Fx(2-10 keV) > 3e-15 cgs
  - Swift/BAT 3 months Catalog (Markwardt+ 2005)
  - ASCA LSS/MSS
  - CLASXS
  - XMM Hard Bright Sample (Caccianiga+ 04)
  - XMM Lockman Hole 800 ks (Hasinger+01, Matteos+05)
  - CDFS + XMM 400 ks (Giacconi+02, Streblyanska+08)
- Redshift dependence is not significant, but plausible: if true indicative of higher fraction of Compton thick AGNs at early universe?



**Elvis** 

## New Type: Other Examples

- Log N<sub>H</sub>~23.8 cm<sup>-2</sup>, very small scattering (S<0.3%) and strong reflection (R>1)
- More in Mushotzky's talk



Ueda

Eguchi (2008)



## Recommendation

Study systematically a larger sample of Swift BAT sources to pin down reflection and scattering

These two parameters strongly beat with the fraction of Compton-thick sources

## Thank you very much!

And apologies to all the wonderful Suzaku results I was not able to mention in my talk