Suzaku Future Impact on Galactic and Extragalactic Extended Objects

John P. Hughes Rutgers University

Galactic Extended Objects

- Solar wind charge exchange (Posters: Ezoe, Hagihara, Henley)
- Comets (Brown talk)
- Hot diffuse ISM (Shelton talk)
- Supernova remnants
 - Thermal properties (Hwang talk)
 - Ejecta composition (Posters: Yamaguchi, Park, Nakajima, Tamagawa, Hayato)
 - Evolved SNRS, ISM shocks (Posters: Katsuda, Uchida, Ozawa, Stage)
 - Nonthermal shock properties (Bamba, Uchiyama talks)
 - Detailed studies of individual sources (Tanaka, Maddox talks, Posters: Allen, Nakamura)
 - HESS source follow-up (Matsumoto talk, Posters: Puehlhofer, Anada)
 - Pulsar wind nebulae (Poster: Mori)
- Large scale Galactic X-ray emission
 - Galactic Center (Koyama, Tsuru talks, Posters: Inui, Nobukawa, Takikawa); Galactic Bulge (Kokubun talk); Galactic Ridge (Posters: Laurent, Ebisawa, Yao)

Fe-peak Elements in Tycho

In SNe Ia nucleosynthesis is the explosion: C-O burns at high P and T to nuclear statistical equilibrium (NSE)

hydrogen 1									8757									^{helium} 2 He
1.0079 lithium	beryllium	ì					5	6N					boron	carbon	nitrogen	oxygen	fluorine	4.0026 neon
3	4 Bo												5	6	7 N	Å	9 E	10 No
6.941	9.0122		_	. – –	_								D 10.811	12.011	14.007	15,999	18,998	20.180
sodium	magnesium 12		- N	ISI						No	t		aluminium 13	silicon 14	phosphorus 15	sultur 16	chlorine 17	argon 18
Na	Ma				-	Dete	ected	i	D	otoc	tod		Â	Si	P	S	CL	Ar
22.990	24.305												26,982	28.086	30.974	32.065	35.453	39.948
potassium 19	calcium 20		scandium 21	titanium 22	23	chromium 24	manganese 25	iron 26	cobalt 27	nickel 28	29	zinc 30	gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	36
Κ	Ca		Sc	Ŕ	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098 rubidium	40.078 strontum		44.956 yttrium	47.867 zirconium	50,942 niobium	51.996 molypdenum	54.938 tecnnetium	55.845 rutnenium	58.933 rhodium	58.693 pallacium	63.546 silver	65.39 cadmium	69.723 indium	72.61 tin	74.922 antimony	78.96 tellurium	79.904 iodine	83.80 xenon
37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	_52	53	54
Rb	Sr		Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Хе
85.468 caesium	87.62 barium		88.906 Iutetium	91.224 hafnium	92.906 tantalum	95.94 tungsten	[98] rhenium	101.07 osmium	102.91 iridium	106.42 platinum	107.87 gold	112.41 mercury	114.82 thallium	118.71 lead	121.76 bismuth	127.60 polonium	126.90 astatine	131.29 radon
55	56	57-70	71	72	_73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TL	Pb	Bi	Po	At	Rn
132.91 francium	137.33 radium		174.97 lawrencium	178.49 rutherfordium	180.95 dubnium	183.84 seaborgium	186.21 bohrium	190.23 hassium	192.22 meitnerium	195.08 ununnilium	196.97 unununium	200.59 ununbium	204.38	207.2 ununquadium	208.98	[209]	[210]	[222]
87	88	89-102	103	104	105	106	107	108	109	110	111	112		114				
Fr	Ra	* *	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq				
[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]		[289]	I			
			20								r		<u>, </u>					
*Lant	hanide	series	lanthanum 57	58	praseodymium 59	neodymium 60	61	samarium 62	europium 63	gadolinium 64	65	dysprosium 66	67	erbium 68	69	ytterbium 70	1	
Lant	namac	301103	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Ho	Er	Tm	Yb	1	
			138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04		
* * Actinide series		89	90	91	92	93	94	95	96	97	98	einsteinium 99	100	101	102	1		
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		
			[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]	1	
ecember 12, 2007 The Suzaku X-ray Universe 4																		

Bulk motion of SNR 0509-67.5 A Spectroscopically Confirmed SN Ia

Chandra

Chandra: Epoch2a –

Epoch 1

Chandra: Epoch2b – Epoch 1

HST/ACS

Hughes et al 2008, in prep

Ejecta Expanding at ~6000 km/s

December 12, 2007

Implications for Suzaku Significant line broadening in integrated spectra (as seen by Suzaku: Nakajima et al 2007, poster)

SNR 0509-67.5 6000 km/s SNR 0519-69.0 1300 km/s In resolved objects line broadening should vary with position; most relevant for SN1006 (shows some Si and S line broadening, Yamaguchi et al. 2007) and Tycho.

December 12, 2007

Resonance Line Scattering in SNRs

Extract Suzaku spectrum from softest region (solid white rectangle)

Band ratio map: _ keV to _ keV

Miyata, Masai, & JPH 2008, in press

Resonance Line Scattering in SNRs

Suzaku

Cygnus Loop results

- 10%-40% of line photons are scattered from lineof-sight at rim
- More so for O than other species
- Possible explanation for low measured O abundance
- Affects temperature/net measurements
- Escape fraction varies across remnant

Species	τ	Escape Fractior
C VI Kα	0.16	0.83
N VI Ka	0.11	0.87
Ο VII Kα	0.55	0.63
Ο VIII Lyα	0.20	0.80
Ne IX Ka	0.18	0.81

Cosmic Ray Acceleration Chandra Observations

SN1006

Paradigm Shift!!

Cas A

Tycho

Chandra results on cosmic ray electrons

Thin nontherm

ny young SNRs

Strong evidence for TeV energy electrons

Suzaku Impact

Ellison et al. 2007

CR Acceleration Models

 Top panel - Model proton (top) and electron (bottom) spectra for B₀ = 3 μG (dotted), 15 μG (dashed), and 60 μG (solid)

- Synchrotron cooling distorts electron spectra at high momentum end
- Bottom panel Photon spectra from radio frequencies to hard Xrays (1-10 keV band indicated)
 - Allows to constrain $p_{e,max}$, B_0 , η_{inj} , α_{cut}
 - In general solution not unique without additional information

December 12, 2007

HESS: High Energy Stereoscopic System

Imaging Atmospheric Cerenkov Telescope (Namibia, Africa) Sensitive to 100 GeV γ-rays

- Spatially resolved images Galactic plane survey new sources
- Potential to observe π^0 -decay signal from CR protons (but leptonic – Inverse Compton – origin also possible)

Optical VHE Gamma Understand the new population: Suzaku X-ray follow-up The Suzaku X-ray Universe December 12, 2007 12

Suzaku X-ray Maps along the Galactic Center and Ridge (GC, GR)

GC – hot thermal plasma – confinement, heating mechanism?

GR – likely point sources

Extragalactic Extended Objects

- Galaxy groups (Loewenstein talk, Poster: Miller)
- Cluster abundance measurements (Sato talk, Posters: Tawa, Tokoi)
- Mass measurements (Henry talk, Posters: Ettori)
 - To the virial radius with Suzaku (Posters: Hoshino, Reiprich)
- Selected topics
 - Bulk flows (Henry talk, Posters: Hayashida)
 - Merging clusters (Posters: Tanaka, Madjeski)
 - Resonance line scattering (Poster: Furuzawa)
 - Soft excesses (Posters: Lieu, Werner, thesis talk: Bulbul)
- WHIM (Ohashi talk, Posters: Takei)
- Cluster Hard X-ray emission (Fukazawa, Sarazin talks, Posters: Kawaharada, Wilk, Nakazawa)

Abundance Profiles

December 12, 2007

Tokoi et al 2008

From Henry's talk

A1413: Mass to R_{vir}

December 12, 2007

The Suzaku X-ray Universe

From Henry's talk Suzaku constraints on bulk flows

Centaurus Cluster Ota et al. PASJ 59, S351, 2007

From Ohashi's talk Summary of Suzaku constraints

on the WHIM

- Suzaku upper limits on Oxygen lines are factor of 3 -5 lower than the XMM "detection".
- Understanding the spectrum of Galactic emission is most important
- Detector background and solar wind process also cause significant effect on oxygen measurement

December 12, 2007

Henry's suggestion for large cluster cosmology Mass - Observable Relation Suzaku project

Observable	Scatter	Self Sim	Observable
		Shape?	Cosmo Depend?
Richness	70%	?	Ν
Luminosity	40%	Ν	У
Temp.	20%	У	Ν
Gas mass	10%	Ν	γ
Y _x	10%	У	γ

Choose Temperature Low scatter Self similar shape so simple physics Independent of cosmology

December 12, 2007 **Suzaku can not measure Y. due to spatial resolution**19

Henry's suggestion for large cluster cosmology Mass - Observable Relation Suzaku project

Observable	Scatter	Self Sim	Observable			
		Shape?	Cosmo Depend?			
Richness	70%	?	Ν			
Luminosity	40%	Ν	Y			
Temp.	20%	Y	Ν			
Gas mass	10%	Ν	У			
Y _×	10%	У	У			
Y ₅₇	10%	Y	Y			

Atacama Cosmology Telescope (ACT) and South Pole Telescope (SPT) are measuring Y_{SZ} in blind surveys of 100's to 1000's sq deg of sky - follow-December 12, 2007 UD SZ clusters with Suzaku X-ray Universe UD SZ clusters with Suzaku kT measurements?

Conclusions

To assure Suzaku's impact we must...

Work on important problems

- Ex.: composition of SN ejecta, explosion mechanism of SNe Ia, confinement/heating of Galactic Center hot gas, abundances in galaxy clusters, cluster masses, cosmology (and so on)
- Pursue pathfinder studies for future missions (NeXT, Con-X, XEUS)
 - Ex.: resonance line scattering, velocity measurements, etc.
- Make substantial links to other wavebands

To implement this we must...

Make a serious commitment to large projects

- Long observations of individual targets, focused study of a large sample of targets
- Very large (few 10⁶ s), multi-year, key projects?

Galactic Extended Objects

- Composition: Yields from supernova explosions
 - Fate of SN ejecta metals in the Universe
 - Star formation history in clusters
- Explosion mechanisms
 - Violent core collapse: jets, Fe/Si ejecta overturning in Cas A
 - How do SN Ia's explode?
- Sites of cosmic ray acceleration
 - Recall energy densities of CRs, starlight, & magnetic field in Galaxy comparable
 - Essential to the understanding of high-Mach collisionless shocks
 - Broader question: how do shocks partition their energy into bulk motion, thermal and nonthermal electrons and ions?
 - Energy removed from bulk motion & thermal gas less available to stir the ISM

HESS Spectra of RX J1713

Aharonian et al (2006)

Inverse Compton Interpretation

- Links X-ray and γ-ray emission as suggested by similar morphology
- Requires low magnetic field

Proton/ π^0 -decay Interpretation

- Fits spectral shape
- Requires high ambient density, inconsistent with XMM results

SNR 0509-67.5: A Spectroscopically Confirmed SN Ia

Light Echoes from Old or Ancient LMC SNe
1) SN1987A 15 yrs
2) 0519-69.0 600 yrs
3) 0509-67.5 400 yrs
4) N103B 900 yrs

Rest et al 2005

December 12, 2007

SNR 0509-67.5: X-ray Spectrum

XMM-Newton (PN)

Constraints Line Centroids - Si K α $-S K\alpha$ - Fe K α Flux Ratios – Ο Κα/Si Κα – Fe L/Si Kα – Fe K α /Si K α SNR 0509-67.5

Badenes, JPH, et al 2007, ApJ, in press

Recall 1 parameter variation of SNe Ia: is SN1991T-like Luminous-to-faint SNe correspond to high-to-low Ni mass

December 12, 2007

Proper motion of SNR 0509-67.5

Chandra

Chandra: Epoch2a – Epoch 1

Chandra: Epoch2b – Epoch 1

Ejecta Expanding at ~6000 km/s

HST/ACS

Hughes et al 2008, in prep

December 12, 2007