Suzaku Observations of SNR RX J1713.7-3946 in the Energy Range from 0.4 keV up to 40 keV

Takaaki Tanaka (SLAC/KIPAC, ISAS/JAXA)

Yasunobu Uchiyama, Tadayuki Takahashi (ISAS/JAXA), Felix Aharonian (MPIK) and the Suzaku RX J1713 team

12/12/2007 Suzaku X-ray Universe @ Catamaran Hotel, San Diego

Best Object for Study of Particle Acceleration

- Non-thermal X-ray emission dominates
- Bright & Large $(d \approx 1^{\circ})$
- Studied well also in TeV gamma-rays with H.E.S.S.

Cutoff ? Morphology of Dim Parts? \rightarrow Suzaku

XIS Data (0.4-12 keV)

1-5 keV

Power-law type spectra (No line features) $\Gamma = 2.2-2.7$ Consistent with previous studies by ASCA, Chandra and XMM-Newton

Cutoff around 10 keV

Spectrum of SW rim

 $\frac{dN}{d\varepsilon} \propto \varepsilon^{-\Gamma}$

Power Law with an Exponential Cutoff $\frac{dN}{d\varepsilon} \propto \varepsilon^{-\Gamma} \exp\left[-\left(\frac{\varepsilon}{\varepsilon_c}\right)\right]$

Spectral steepening even below 10 keV

HXD: Spectra above 10 keV

Detected up to $\simeq 40$ keV from all pointings

HXD: Spectral Fitting power-law fit $\rightarrow \Gamma \simeq 3.2$ significantly larger than those in soft X-ray band

Wide-Band Spectrum From 0.4 keV to 40 keV

Detection up to 40 keV \rightarrow Clear spectral cutoff

Cutoff Energy

Cutoff Energy → Acceleration rate = Synchrotron loss rate Zirakashvili & Aharonian (2007) Predict rapid cutoff which agrees with Suzaku spectrum

$$\varepsilon_0 = 0.55 \left(\frac{v_s}{3000 \text{ km s}^{-1}}\right)^2 \eta^{-1} \text{ keV} \quad (\eta \ge 1)$$

Suzaku Spectrum

Chandra Image Uchiyama et al. Nature (2007)

 $\eta \approx 1$

 $v_s < 4500 \text{ km s}^{-1}$

 $\varepsilon_0 = 0.67 \pm 0.02 \text{ keV}$

Almost the Bohm limit Very Efficient Acceleration

Magnetic Field Uchiyama et al. (2007) Nature

Year-scale Variability detected with Chandra → Acceleration & Cooling in year-scale → High Magnetic Field: 1 mG

Multi-Wavelength Spectrum

B = $200 \ \mu\text{G}$, t₀ = 1000 yr, s = $2.0 \text{ (for } e^{-} \text{ and } p)$ W_e = $3.1 \times 10^{46} \text{ erg}$, nW_p = $2.7 \times 10^{50} \text{ erg } \text{ cm}^{-3}$

keV Image vs TeV Image

Color: Suzaku XIS (1-5 keV) Contour: H.E.S.S.

Similar morphology also in the dim parts (Low BGD and large effective area of Suzaku XIS)

H.E.S.S.

Compare flux for the each square region

keV Image vs TeV Image

Tight Correlation

Homogeneous matter distribution ? (Inconsistent with NANTEN) Synchrotron emission correlate with matter distribution ?

"keV" excess

Large e/p ratio ? Recent acceleration at the bright spots ?

Toy Model

Toy Model vs Observation

Toy model

Observation

Conclusions

- We observed RX J1713.7-3946 with Suzaku
- We have detected hard X-rays up to 40 keV from RX J1713.7-3946, for the first time
- We have clearly detected cutoff structure around 10 keV
- Cutoff energy indicates very efficient acceleration (almost in the theoretical limit)
- Multi-wavelength spectrum can be well modeled with hadronic scenario.
- Tight keV-TeV correlation & "keV excess" in the brights spots
- Upcoming GLAST will play an important roll in determining the gamma-ray spectrum

Suzaku Observation of RX J1713.7-3946

11 Pointings (2005 & 2006) Covers about 2/3 of the remnant

Pointing ID	Exposure [ks] XIS / HXD
0	55/48
1	17 / 17
2	18 / 22
3	19 / 18
4	18 / 21
5	16 / 19
6	20/19
7	12/11
8	19/20
9	16 / 15
10	15/15

keV Image vs TeV Image

Color: Suzaku (1–5 keV) Contour: H.E.S.S.

Similar morphology also in the dim parts

Spatial Variation Input soft X-ray image to MC simulator Compare detected flux between obs. and sim.

Systematic Error $\simeq 20\%$

Hard X-ray emission seems to follow the brightness distribution of soft X-rays

Cutoff Shape

Suzaku Data (Super-Exponential)
 Zirakashvili & Aharonian (2007)
 Exponential Cutoff

Multi-Wavelength Spectrum

B = 14 μ G, t₀ = 1000 yr, s = 2.0 W_e = 1.4×10⁴⁷ erg

keV Image vs TeV Image

$F_{kev} vs F_{Tev}$

Map of F_{keV} – F_{TeV}

Tight Correlation & "keV excess" at the bright spots

Hadronic Model

H.E.S.S. data requires

$$W_p \simeq 10^{50} \left(\frac{D}{1 \text{ kpc}}\right)^2 \left(\frac{n}{1 \text{ cm}^{-3}}\right)^{-1} \text{ erg}$$

A matter density of > 0.2 cm⁻³ is needed, assuming...

- The typical kinetic energy released by a supernova of 10^{51} erg
- The conversion efficiency to the high energy protons of < 50%

Upper Limit on Thermal Emission

$$\mathrm{EM} = \frac{1}{4\pi D^2} \int n_\mathrm{e} n_\mathrm{H} \ dV$$

Normalization of thermal component

$$n = 1 \left(\frac{\text{EM}}{10^{14} \text{ cm}^{-5}}\right)^{1/2} \left(\frac{D}{1 \text{ kpc}}\right)^{-1/2} \text{ cm}^{-3}$$

Matter density of n > 0.2 cm⁻³ ↓ The electron temperature of 0.1 keV or lower Efficient acceleration with gas heating suppressed ?

Upper Limit on Thermal Emission

$$EM = \frac{1}{4\pi D^2} \int n_e n_H dV$$
Normalization of thermal component
$$\downarrow$$

$$= 1 \left(\frac{EM}{1000}\right)^{1/2} \left(\frac{D}{1000}\right)^{-1/2} cm$$

1 kpc

Matter density of n > 0.2 cm⁻³ ↓ The electron temperature of 0.1 keV or lower Efficient acceleration with gas heating suppressed ?

 10^{14}

 cm^{-5}