A Review of Suzaku Studies of Stellar X-ray Emission

M. Tsujimoto, K. Hamaguchi, S. Yamauchi, Y. Ezoe, Y. Hyodo

3. Main Dish

8

7

6

5

_____4. Coffee

16

9 10 11 12 13 14 15

Appetizers 2. Publications ... 10% of sci. papers in special issue

A. Transient and variable stars.

1. Menu 2. Appetizer

2

3

- 1. "Discovery of a New Hard X-Ray Transient Source in the Scutum Region with Suzaku" ... Yamauchi, Ebisawa, et al.
- 2. "Suzaku Detection of an Intense X-Ray Flare from an A-type Star" ... Miura, Tsujimoto, Tsuboi, et al.
- 3. "Suzaku X-Ray Spectroscopy of a Peculiar Hot Star in the Galactic Center Region" ... Hyodo, Tsujimoto, Koyama, et al.

Main dish

B. Diffuse emission in HII regions.

- 4. "Suzaku Observation of Diffuse X-Ray Emission from the Carina Nebula" ... Hamaguchi, Petre, Matsumoto, et al.
- 5. "Suzaku Spectroscopy Study of Hard X-Ray Emission in the Arches Cluster" ... Tsujimoto, Hyodo, Koyama
- "Suzaku Spectroscopy Study of the Extended X-Ray Emission in M17" ... Hyodo, Tsujimoto, Koyama, et al.

SoWhat Since

Appedizer

source Main Dish

3. Main Dish

10 11 12 13 14 15

5. Extended X-ray Emission in HII Regions ---- Theory ----

9

Pioneering work

2

- Dyson & de Vries (1972)

1. Menu 2. Appetizer

3

RS

5

6

7

8

- Weaver et al. (1977)

— Self-similar solutions —

4. Coffee

16

	SNR	Bubble
model	Sedov	Weave
energy input	instan- taneous	conti- nuous
radius	t ^{-5/2}	t ^{-5/3}
power source	SN	massiv star(s)

soft diffuse X-rays

ontical (forbidden lines

UV Radiation Winds

. Menu 2. Appetizer

3. Main Dish

0

4. Coffee

Seward & Chlebowski (1982)

Trumpler 14 [OB assoc.]

Einstein/IPC

HD93205 [O3.5V]

η Carina [LBV]

HD93205 [O3V]

30 arcmin 23 pc @ 2.6kpc

Carina Nebula: a "brobdingnag Contour : X-ray counts Gray scale : UV (3300-3900A)

WR25 [WN?]

1. Menu 2. Appetizer 3. Main Dish 4. Coffee 10 11 12 13 14 15 5 6 8 9 16 2 3 11. Comparison M17 and Carina Nebula Carina M17 Atomic number Plot provided by Y. Ezoe 0.1 **Metallicity** sub-region a north south b С AI Ne Mg Si Ne Mg Si S S Ar Ca Fe Ni ΝO Ar Ca Fe N CNO 0.01 10.0 5 10 25 30 30 15 20 10 15 20 25

Spatially uniform.

Abundance pattern similar to young stars, inconsistent with SN

Spatially non-uniform.

Abundance pattern inconsiste with η Carina & WR25 (Z_N/Z_O)

origin: SNRs involv

13. Physics of Bubbles

- 1. Plasma volume & density : V ~ 30 pc³; $n_e \sim 1$ cm³
- 2. Plasma mass : $1 \text{ M}_{o} \sim (10^{-6} \text{ M}_{o}/\text{yr}) \times 10^{6} \text{ yr}$... Evaporated mass from ISM negligible.
- 3. Energy budget : $L_{wind} \sim 10^{35}$ erg/s; $L_x \sim 10^{33}$ erg/s ... X-ray radiation is tiny.
- 4. Thermal equilibrium
- ... t_{cross} & t_{relax} << t_{system} 5. Magnetic field?

16. Summary

1. Transient & variable stars

... Some rare sources were serendipitously spotted (Algol-type with long-term flux variation, isolated WC).

- 2. Diffuse Emission in HII Regions
 - Pre-Suzaku: spectroscopic studies urged.
 - Suzaku: spectroscopy done.
 - 1. Plasma parameters derived.
 - 2. Chemical abundance pattern determined.
 - 3. Some hints of the origin of the emission.

