XMM-Newton Data Analysis Workshop 27th November 2001

Spectral analysis of point-like sources with EPIC

Matteo Guainazzi XMM-Newton Science Operation Center

evselect: the SAS extractor

In order to extract scientific products (spectra, light curves, images, histograms) one needs a software machine able to binning appropriate columns of an event lists, while applying event filtering "on-the-fly"

What is called extractor in the LHEASOFT world (with its user interface xselect), or dmextract in CIAO, is the SAS evselect

evselect has a GUI interface, xmmselect, which allows the user to perform all the evselect tasks in a button-driven, user-friendly way

This presentation will be focused on the usage of xmmselect. However, each xmmselect operation has its corresponding evselect command-line translation. *E.g.:* if one wants to extract a spectrum from a region of 128 sky pixels around (18000,18000) and with PATTERN in the range 0-12, from a MOS1.evt event list:

```
evselect table="MOS1.evt:EVENTS" withspectrumset=yes
spectrumset="my_spectrum.pi" energycolumn="PI" expression="((X,Y)
in circle(18000,18000,128))&&(PATTERN=<12)"</pre>
```


The xmmselect window

XMM-Newton Data Analysis Workshop

Camera-dependent screening criteria

Experience of on-flight calibrations has allowed to identify a couple of *optimal* camera-dependent screening criteria:

0x20) != 0' / CLOSE TO ONBOARD BADPIX

MOS:

• #XMMEA_EM: this is a bitwise selection expression, which allows to automatically remove "bad events" in terms of bad rows, edge effects, spoled frames, GATTIX rejection, cosmic ray events, diagonal events, event beyond threshold and so on the

• **PATTERN=<12**: this selection of the event shape ("grade" in ASCA) maximises the signal-to-noise ratio against non X-ray events. Analysis of spectra extracted from single events only (**PATTERN==0**) is supported and calibrated as well

<u>pn:</u>

• **#XMMEA_EP:** see above

• Spectral analysis calibrations are available for both single (PATTERN==0) and double [(PATTERN=>1)&&(PATTERN<4)] events

Defining interactively a spatial region

	- SAOImage Ds9–mguainaz r 🗆	
Elle Column Region Viewer Products Style Help	<u>Eile Edit Frame Ein Zoom Scale Color Region A</u> nalysis <u>H</u> elp	
Selection expression #XMMEA_EM&&(PI>=300) Starting solection expression	File image.ds	If now one clicks on the "2D region button" of the main
evselect	Physical X Y	xmmselect window
General Image Spectrum Lightcurve Histogram	Frame1 Zoom 0.250 Ang 0.000 Image	
✓ withimageset	File Frame Bin Zoom Scale Color Region circle ellipse box polygon line text ruler point region	
		2D region
xcolumn X		
Ranges		
withxranges		
ximagemin 1 ximagemax 640		
yimagemin 1		
yimagemax 640		↓
Binning		Darian Viewer Breduste Stide Liale
	- Selection ex	ression
	#AMMEA	EM&&(PATTERIN<=12)&&(P1>=3UUJ&&((X,Y) IN CIFCIE(25851,25831,152U))
	400 300 import	clear
imagedatatype	"ds9" window	
evselect window	(appears after clicking "Run"	The exetical filter is
(appears after clicking on "Image"	on the evselect window)	nroporty ("8.8.") imported
in the main xmmselect window)		in the selection
Run Defeute Canad		expression widget!
attillines	XMM-Newto	on Data Analysis Workshop
		-

XMM Newton M.Guainazzi

Defining interactively a 1-D (time) interval

6

XMM Newton

M.Guainazzi

Background subtraction issues

1. In general, it is advisable to extract the background spectrum from source-free, nearby regions on the same chip. Good geometry choices are a circular region at the same off-axis angle (in the MOS) or on the same raw coordinates row (in the pn), or an annulus around the source. The background spectrum extraction follows in this case the same procedure as the source

2. Alternatively, blank fields files, available on the XMM-Newton calibration pages, can be used. This is a good choice for windowed modes, where most likely no enough room is available to extract meaningful background spectra. Source and background spectra needs to be extracted from the same regions in detector coordinates, and using of course the same screening criteria.

When spectra are extracted from blank sky field, the EXPOSURE keyword (exposure time) needs to be manually updated:

fparkey EXPOSURE my_background.fits value

3. XMM-Newton experiences sometimes high flaring background periods, most likely due to soft protons accelerated by magnetic reconnection. They needs to be removed before extracting any scientific products, according to the following recipe:

Recipe to clean flaring high background

• extract a high-energy (E > 10 keV), single event light-curve, with the expression: (PI>10000)&&(PATTERN==0)&&#XMMEA_E[MP]

• create a GTI, excluding all the "flaring" intervals tabgtigen table="high_energy_curve.fits" gtiset=gti.fits expression="COUNTS<15"

• apply the above GTI to any scientific products accumulations, adding to the selection expression the string: "... gti(gti.fits, TIME) ..."

November 27th, 2001

Pile-up, and how to deal with it

Pile-up is the accumulation of *n* events in the same pixel during the time a CCD frame is read out. The accumulated events are interpreted as one single event, whose energy $E=E_1 + E_2 + ... + E_n$. Pile-up produces therefore both flux loss and spectral distortion.

Pile-up may be a problem for e.g. Full Frame exposures, when the count rate is > 0.7 (MOS)/8 (pn) s⁻¹

M.Guainazzi

The concept of "response matrix"

Spectra are created in counts. The information to convert the counts to physical units during the spectral analysis is contained in the response matrix. It is the product of:

"Pre-canned" response matrices

Standard ("pre-canned") EPIC response matrices are available in the XMM-Newton calibration pages for the analysis of point-like, on-axis sources. Several matrices are available, according to different:

- cameras (MOS1, MOS2, pn)
- filters (thin, medium, thick)
- pattern distribution ["0" (singles) or "0-12" for the MOS cameras; "0" (singles) "1-4" (doubles) or "singles+doubles" for the pn camera]
- source position in raw coordinates (pn only)

Their use requires particular spectral ranges and binnings to be applied during the spectral extraction:

	specchannelmin	specchannelmax	spectralbinsize
MOS	0	11999	15
pn	0	20479	5

SAS tasks to generate EPIC responses

Alternatively, EPIC response matrices can be generated using the SAS tasks **rmfgen** and **arfgen**, which create customised responses for a given input EPIC spectrum

A "mixed case" is also possible: generate an "*.arf:" on the basis of a "pre-canned" "*.rmf"

Which matrix shall I use?

Generally, the "pre-canned" matrices follow more closely the development of the on-flight calibrations. In case of discrepant results fitting a point-like, on-axis source, the results obtained with them are to be considered more reliable.

However, the difference with the matrices generated by the SAS tasks is getting smaller and smaller, and is now virtually negligible for most practical cases

Moreover, SAS task-generated matrices allow greater flexibility, although they still suffer of some limitations (PSF correction is currently accurate only if the extraction regions are circular)

A comparison between the performances of "pre-canned" and SAS-generated matrix is contained (and "frequently" updated) in the SAS validation reports

				SAS-generated
Scenario	Г	N_H (10 ²² cm ⁻²)	χ^2/dof	
MOS1				
1.	1.92±8.8	2.36 ± 0.04	285.8/183	» finalizza all'
2.	1.95±8;8	2.40 ± 0.04	240.0/183	
3. (PATTERS=0-12)	1.86±8.33	2.28 ± 0.04	222.2/183	
3. (PATTERN=0)	1.90±8.8	2.32±0.00	184.5/172	
MOS2			-	
1.	1.86±8:88	2.28 ± 0.04	332.0/183	
2.	1.90 ± 0.03	2.29 ± 0.04	211.9/183	×
3. (PATTERN=0-12)	1.82 ± 0.03	2.19 ± 0.04	235.6/183	nre-canned
3. (PATTERN=0)	1.86 ± 0.03	2.22 ± 0.05	211.8/170	pre bannea
p-n				
1.	1.93 ± 0.02	2.36±3:8	422.0/224	
2.	1.96 ± 0.02	2.42±0.09	353.0/224	
3. (PATTERN=0)	1.86 ± 0.02	2.24 ± 0.03	324.1/224	
3. (PATTERN=0-4)	1.87 ± 0.02	2.28+8:8	290.4/212	

Table 2: G21.5-0.9 observation best-fit parameters. Errors are at the 90% confidence level for one interesting parameter. Indices refer to the three "paths" available to generate EPIC response matrices with SAS v5.1

XMM-Newton Data Analysis Workshop XMM Newton

How big is an optimal source extraction region?

Apart from specific scientific needs, the optimal source extraction region aims at maximising the net signal-to-noise *at all energies*, while avoiding crossing the chip boundaries (if one wants to avoid specific chip-dependent background corrections). One has therefore to refer to the CCF Encircled Energy Functions

The SAS response matrix generation tasks take already properly into account the encircled energy fraction, provided that the extraction region is circular.

The "pre-canned" EPIC response matrices correspond to an infinite extraction radius. A correction on the flux for the finite-radius photon loss needs to be applied downstream

Is my spectrum good enough?

There are two main sources of information to answer this question:

November 27th, 2001

1. the CCF release notes, which report the expected accuracy associated with each individual CCF component

2. The SAS validation reports, which compare the expected calibration accuracies on a pre-defined set of XMM-Newton observations. An update of the report is issued at every new SAS release

I have forgotten everything ...

No panic! All the information included in this presentation are available on the web:

- SAS: http://xmm.vilspa.esa.es/sas
- SAS User Guide:

http://xmm.vilspa.esa.es/sas/documentation/userguide.ps.gz

• Calibration and calibration files: http://xmm.vilspa.esa.es/calibration/

• Quality of EPIC response matrices: http://xmm.vilspa.esa.es/docs/documents/PS-TN-0043-2-0.ps.gz

- SAS validation data and report: http://xmm.vilspa.esa.es/public/xmm_sas_sv.html
- EPIC background issues:

http://xmm.vilspa.esa.es/docs/documents/CAL-TN-0016-1-0.ps.gz

If everything else fails, send an e-mail to the HelpDesk: xmmhelp@xmm.vilspa.esa.es

