RXTE and AGN X-ray Variability

Ian M^cHardy

University of Southampton

Talk Outline

1. AGN / binary `states'

2. Black Hole Timing unification

3. X-ray / optical variability

³ Previously, eg, Halpern 1982, Barr and Mushotzky 1986 – low luminosity, less variability

Historical Motivation – BH Masses from periodicities

• X-ray variability of Active Galaxies is `FRACTAL', or scale invariant, on short timescales

Scale invariance breaks on longer timescales.

(McHardy 1988)

Are AGN just scaled up galactic black hole systems?

TIMING STATES

Frequency x Power **`Unfolded' Power Spectral Density (PSD)**

Cyg X-1 Low-hard state PSD

•NGC4051 partly like Cyg X-1 low-hard state, but no second break

More like high-soft state of Cyg X-1

PSDs of some other AGN

No (timing) hard states confirmed yet.

Lack of low state systems is probably a selection effect. Present targets are X-ray bright - higher accretion rates

Very High State – Akn564

(Many papers including Pounds et al 2001; Edelson et al 2002; Papadakis et al 2002; Markowitz et al 2003; Vignali et al 2004, Arevalo et al 2006, Papadakis et al 2006)

Akn564: VHS PSD and Time Lags

Also seen in binaries in hard or VHS state

As \dot{m}_{E} 1 implies VHS, not `hard' state for Akn564

Scaling of Characteristic Timescales: Black Hole Mass vs. PSD Break Timescale (T_B)

(Note rough lines of linear scaling, not fits, from Cyg X-1 in its `low-hard' and `high-soft' states)

Proper 3D fit to ${\rm T_b}, {\rm M}, {\rm ~\dot{m}_E}$

AGN X-Ray Variability and Optical Linewidth

(McHardy et al, 2006; Summons et al in prep)

IMPLICATION: NLS1 same as other AGN but have smaller ratios of M / \dot{m}_E Small masses are selection effect as \dot{m}_E can't easily exceed unity The high frequency PSD: Mass scaling

(eg McH 1988; Green et al 1993; Hayashida et al 1998; Gierlinski et al 2008; Kelly et al 2010)

Gierlinski et al 2008

Low frequency PSD Normalisation

Low frequency PSD Normalisation

Inverse dependence on accretion rate

Unified Description of AGN X-ray Variability

Optical Variability in AGN: Reprocessed X-rays or intrinsic disc variability?

NGC 4051

NGC4051

Optical lags by 1.5+/- 0.5 d (above 99% confidence)

Breedt et al 2010

Short term correlation but different long term trends

Optical probably a combination of X-ray reprocessing and intrinsic disc variations (inwardly propagating fluctuations)

(Breedt et al, 2009, MNRAS) 20

```
Southampton
```

Simulated Optical Lightcurves Propagating fluctuations plus X-ray reprocessing

(from Arevalo et al 2008)

X-ray/optical peak correlation coefficient vs. disc temperature

Optical emission region in cool disc is closer to black hole and subtends larger solid angle at X-ray source

CONCLUSIONS

AGN probably occupy same states as GBHs, but no hard states confirmed yet.

Timing unification: PSD bend timescale depends on M / \dot{m}_E HF psd normalisation depends on M LF psd normalisation depends inversely on \dot{m}_F

Short timescale optical variability in Seyferts dominated by reprocessing of X-rays - dependent on disc temperature.