Boy floating in spacesuit


Stars evolve, or change, over time. It may take millions of years or it may take billions of years for a star to complete its life cycle.

A star is a brilliantly glowing sphere of hot gas whose energy is produced by an internal nuclear fusion process. Stars are contained in galaxies. A galaxy contains not only stars, but clouds of gas and dust. These clouds are called nebulae, and it is in a nebula where stars are born. In the nebula is hydrogen gas which is pulled together by gravity and starts to spin faster. Over millions of years, more hydrogen gas is pulled into the spinning cloud. The collisions which occur between the hydrogen atoms starts to heat the gas in the cloud. Once the temperature reaches 15,000,000 degrees Celsius, nuclear fusion takes place in the center, or core, of the cloud. The tremendous heat given off by the nuclear fusion process causes the gas to glow creating a protostar. This is the first step in the evolution of a star. The glowing protostar continues to accumulate mass. The amount of mass it can accumulate is determined by the amount of matter available in the nebula. Once its mass is stabilized, the star is known as a main sequence star. The new star will continue to glow for millions or even billions of years. As it glows, hydrogen is converted into helium in the core by nuclear fusion. The core starts to become unstable and it starts to contract. The outer shell of the star, which is still mostly hydrogen, starts to expand. As it expands, it cools and starts to glow red. The star has now reached the red giant phase. It is red because it is cooler than the protostar phase and it is a giant because the outer shell has expanded outward. All stars evolve the same way up to the red giant phase. The amount of mass a star has determines which of the following life cycle paths the star will take.
The Pleiades (M45)
The Pleiades
The Cat's Eye Planetary Nebula
The Cat's Eye Planetary Nebula


As a red giant, the hydrogen gas in the outer shell continues to burn as the temperature in the core continues to rise. At 200,000,000 degrees Celsius, the helium atoms fuse to form carbon atoms in the core. The last of the hydrogen gas in the outer shell is blown away to form a ring around the core. This ring is called a planetary nebula. When the last of the helium atoms in the core are fused into carbon atoms, the medium size star begins to die. Gravity causes the last of the star's matter to collapse inward and compact. This is the white dwarf stage which is extremely dense. White dwarfs shine with a white hot light but once all of their energy is gone, they die. The star has now reached the black dwarf phase.


Once massive stars reach the red giant phase, the core temperature continues to increase as carbon atoms are formed from the fusion of helium atoms. Gravity continues to pull together the carbon atoms in the core until the temperature reaches 600,000,000 degrees Celsius. At this temperature, carbon atoms form heavy elements such as oxygen and nitrogen. The fusion and production of heavy elements continues until iron starts to form. At this point, fusion stops and the iron atoms start to absorb energy. This energy is eventually released in a powerful explosion called a supernova. A supernova can light the sky up for weeks. The temperature in a supernova can reach 1,000,000,000 degrees Celsius. This high temperature can lead to the production of new elements which may appear in the new nebula that results after the supernova explosion. The core of a massive star that is 1.5 to 4 times as massive as our Sun ends up as a neutron star after the supernova. Neutron stars spin rapidly giving off radio waves. If the radio waves appear to be emitted in pulses (due to the star's spin), these neutron stars are called pulsars. The core of a massive star that has 10 or more times the mass of our Sun remains massive after the supernova. No nuclear fusion is taking place to support the core, so it is swallowed by its own gravity. It has now become a black hole which readily swallows any matter and energy that comes too near it. Some black holes have companion stars whose gases they pull off. As the gases are pulled down into the black hole, they heat up and give off energy in the form of X-rays. Black holes are detected by the X-rays which are given off as matter falls down into the hole.

A Question

What determines just how large a star becomes?

Boy holding satellite

Did you know?
Did you know?

The Answer
The Answer


Show me the Level 1 version of this page.

The StarChild site is a service of the High Energy Astrophysics Science Archive Research Center (HEASARC), Dr. Alan Smale (Director), within the Astrophysics Science Division (ASD) at NASA/ GSFC.

StarChild Authors: The StarChild Team
StarChild Graphics & Music: Acknowledgments
StarChild Project Leader: Dr. Laura A. Whitlock
Curator: J.D. Myers
Responsible NASA Official: Phil Newman